Artificial Neural Networks – As the name suggests “Neural Networks”, are inspired by the human brain system. ANNs were originally designed with biological neurons as a reference point; sometimes they are called a brain model for computers.

Collection Of Algorithms

It’s more of a framework than an algorithm. ANNs can process information in the form of audio, video, images, texts, numbers, or any other form of data. Neurons, i.e., perceptrons (as known in the early days), were staged as a decision function in those times.

Artificial neural networks are designed to take several binary inputs and give a binary output. Professor Frank Rosenblatt was the first to use neural networks.

This post is just an overview of artificial neural networks. The idea is to explain what are Artificial Neural Networks, what they can do, and how to use them in our machine learning challenges. This post is written in simple English for readers who are new to this animal. PhD scholars and professionals with experience are welcome to comment to improve this simple paper.

How Neural Network Algorithms Works: An Overview

Artificial Neural Networks – Types and Kinds

ANNs learn, get trained and adjust automatically like we humans do. Though ANNs are inspired by the human brain fact they run on a far simpler plane. The structure of neurons is now used for machine learning thus called artificial learning. This development has helped various problems to come to an end especially where layering is needed for refinement and granular details are needed.

There are several kinds of Neural Networks in deep learning. Which one needs to be picked entirely depends upon the data to train and the end goal. Voice recognition kinds of challenges might need combinations. Neural networks consist of input and output layers and at least one hidden layer.

The most widely used type of neural networks are CNN- Convolutional Neural Networks and RNN- Recurrent Neural Networks.  In RNNs data flow is in multiple directions. These networks are employed for highly complex tasks i.e. voice recognition, handwriting and language recognition, etc. Thus RNNSs abilities are quite limitless.

A neural network based on a radial basis function can be used for strategic reasons. There are several other models of the neural network including what we have mentioned above. For an introduction to the neural network and their working model continue reading this post. You will get a sense of how they work and are used for real mathematical problems.

Artificial Neural Networks (ANN) – Some background

As per Dr Robert Hecht-Nielsen, the inventor of one of the first neuron computers, ANN is “A computing system made up of several simple, highly connected processing elements, which process information by their dynamic state response to external inputs.”

AILabPage defines – Artificial neural networks (ANNs) as “A complex computer code written with several simple, highly interconnected processing elements which are inspired by human brain structure for simulating human brain working & processing data (Information) models. Or simply “a mathematical mesh”, point to note, it’s way different than traditional computer program though.

Deep Learning – Introduction to Artificial Neural Networks

The human brain needs a much smaller data set when processing or classifying data sets as compared to computer simulation (neural networks) to learn patterns and caption images.

The human brain is way more powerful and steps ahead in identifying and labelling physical and non-physical items. When we need to identify images and handwriting, speak different languages, and watch videos to understand and recreate, the human brain cannot be bitten.

For machines, the same skills are far more complex, but ANNs are making it possible now. For humans, understanding the brain is easy by using their own brains.

How Neural Network Algorithms Works: An Overview

Artificial Neural Networks (ANN) – Building Blocks

In 1943 Warren S. McCulloch and Walter Pitts came out with a highly simplified model of a neuron in their paper and made an important contribution to the development of artificial neural networks. ANNs consist of several parameters, hyper-parameters, and layers. Parameters and hyper-parameters help to drive output from the neural network model. Weights, the number of epochs, biases, batch size and learning rates are a few examples of parameters. Neural nets consist of 3 layers. These nodes process information:

  • Input Layers: The entry point to the neural network, this entry point or layer takes input data as numbers, texts, audio, videos and image as pixels, etc.
  • Hidden Layers: The next layer or input is taken from the output of the input layer. This layer is responsible for number crunching i.e. mathematical operation, paying attention to detecting patterns of data which the human eye can’t see and extracting of features, etc. There can be a minimum of one or many multiple hidden layers.
  • Output Layer:  Takes input from the hidden layer to generate the desired output.

Artificial neural networks have a very important role in building deep learning models. Like the human brain, ANN gets formed by the neuron to process information. ANNs have excellent possibility & flexibility to model, establish and ease out complex relationships between input and output. Neural networks are now part of research subjects like Neuro-informatics (a research field concerned with the organization of neuroscience data by the application of computational models and analytical tools).

A new term is emerging as quantum neural networks (QNNs). These networks i.e. QNNs are specifically designed to work on a quantum process for much faster results. The role of quantum computing in AI and its subdomains like machine learning, deep learning, etc is not yet fully understood. Today it appears as if quantum computing is the answer to many problems in the data science domain which we face today for specific algorithm training and faster learning on the huge data set. When it’s to neural networks, quantum computing looks even more promising due to its complexity and its resource-hungry nature.

I guess as of now it may look theoretical though. I will write a detailed blog post on quantum neural networks (QNNs) soon. The biggest support or benefit will go to the Backpropagation Algorithm (out of QNNs) in my personal view for various reasons. As mentioned above “Backpropagation” is an algorithm that uses supervised learning methods to compute the gradient descent (delta rule) concerning weights. This algorithm uses supervised learning methods for training Artificial Neural Networks.

The whole idea of training multi-layer perceptrons is to compute the derivatives of the error function or gradient descent concerning weights using the backpropagation algorithm.

Artificial Neural Networks (ANN) – Answer to Many Questions

The artificial neural network concept came out of the human brain working model as an inspiration to allow machines to read & generate pictures, and texts for translations, videos and sounds. Today we have fully working models of neural networks that can answer questions through voice processing, recognise handwriting, watch and interpret videos, and understand and predict our behaviour.

It can alert security officials and send the location of the wanted person through face detection and body language behaviour. Neural networks are always at the foundation level for many of the biggest breakthroughs in artificial intelligence. Yes also can drive us around in our cars

Neural networks use supervised as well as unsupervised machine learning data sets and methodologies to achieve results. The supervised learning method is much more suitable and appropriate when neural networks are used for classification problems like email as spam or not spam. Often people get confused between a deep neural network which is actually an artificial neural network only with multiple layers between the input and output layers.

The question here can be how neural networks manage to do so? Well, the answer is simple and complex at the same time as it all boils down to the data we generate. These networks read, understand and find patterns in our data to learn and fine-tune themselves. The more data it processes more smartness it acquires over time. It requires extensive training of neural networks before implementing them in a real-time problem-solving environment, So neural networks can

  • Predict our behaviour and become an expert.
  • Learn to understand and speak our language, text, and handwriting
  • Watch videos to learn facial movement for pronouncing different words and create videos

Neural networks can solve almost any problem. Problems like identifying signatures on bank cheques, cluttering spoken words of different languages, credit card fraudulent transactions, and even unwanted emails. The point to note here is neural networks are a very effective, powerful and excellent tool to find the output for any issue but keep in mind that just because you have a new hammer, it doesn’t mean that everything is a nail (highlighted text taken from the internet). We need to understand, the design on paper and strategies for our path for the solution to a problem in hand.

Artificial Neural Networks Components

Neural Networks work as a visual guide for data evolution strategies which are a highly scalable alternative for deep reinforcement learning. Deep neural networks are fed through raw data; which learns to identify the object on which it is trained or “being trained”. From an architectural point of view, artificial neural networks have three components.

  1. Model Topology (Connections) – To describes the layers of neurons and the structure of the connections between them.
  2. Activation Function (Transfer Function) – Function to be used by artificial neurons.
  3. Learning Algorithm  –  To find the ideal values of the weights.

Each “neuron” is a relatively simple element e.g. summing its inputs and applying a threshold to the result, to decide the output of that “neuron”. Deep Neural Networks are the first family of algorithms within machine learning that do not require manual feature engineering, rather, they learn on their own by processing and learning the high-level features from raw data.

The data thrown into the neural network reveal some patterns (hopefully). On the downside, the neural network works as a complete mystery/black box. The neural network can find patterns in data but how and why it exists, never tells secrete so because it can’t explain such matter thus we need a data scientist to do this job.

Neural Network Working

Deep Learning uses neural networks to create the foundation of the working model architecture. A neural network that took the idea of the human brain working for its basic working model has its basic unit a neuron. Like the human brain artificial neural networks mimic a similar information processing model i.e.:

  • Like the brain sees some pictures through the eyes and combines the feature of the picture, similarly, the neural network takes input as linear combinations through input neurons and combines it for processing.
  • The brain does something and gives output without effort similarly ANNs do some processing and give output. In ANNs, it can show and detect that there are some patterns and useful information but can’t tell how and why.

At the time of inputs in the form of linear combination,  we need to apply some function functions for optimisation reasons. This function is called the activation function to achieve the desired output. Some common examples are:

  • Sigmoid Function – A function to crashes all inputs to allow output to be between 0 and 1
  • ReLU Function  – The Rectified Linear Unit function is a much better function than the “tanh” function and is also the most commonly used activation function. Returns 0 for negative inputs and stays silent for all positive values outputs.
  • Tanh Function –  A function to crashes all inputs to allow output to be between -1 and 1.

After making the explanation above now we can say online, “A neural network is a complicated form of neuron-like structures”. It has excellent possibility & flexibility to model, establish and ease out complex relationships between input and output. Hidden remains hidden though.

Deep Learning or Machine Learning

Making a decision or choosing between ML or DL depends mainly on the problem & data at hand. Some high-level differences are as below. Should you choose to read in detdetailails then I suggest you read “Demystifying the Difference between Machine Learning and Deep Learning“.

  • ANN’s – In ANN’s learning is based on multiple layers of features or representation in each layer with the layers forming a hierarchy of low-level to high-level features. It may sound far-fetched but remember that humans are neurologically hard-wired. ANN’s Focus is really on end-to-end automatic learning based on raw features.
  • Machine learning – In ML focus is on feature engineering. Traditional machine learning creates/train-test splits of the data where ever possible via cross-validation.

In a scenario where a deep understanding of medical symptoms is required for some disease detection, high performance and accuracy are very crucial. So in this case, deep learning would be a better choice compared to traditional machine learning.

Frequently used Jargons in Deep Learning

  • Perceptrons –  A single layer neural network. Perceptron is a linear classifier. It is used in supervised learning. In this computing structure are based on the design of the human brain and algorithms take a set of inputs and returns a set of outputs.
  • Multilayer Perceptron (MLP)- A Multilayer Perceptron is a Feedforward Neural Network with multiple fully-connected layers that use nonlinear activation functions to deal with data that is not linearly separable.
  • Deep Belief Network (DBN) – DBN is a type of probabilistic graphical model that learns a hierarchical representation of the data in an unsupervised manner.
  • Deep Dream – A technique invented by Google that tries to distill the knowledge captured by a deep Convolutional Neural Network.
  • Deep Reinforcement Learning (DRN) –  This is a powerful and exciting area of AI research, with potential applicability to a variety of problem areas. Other common terms under this area are DQN, Deep Deterministic Policy Gradients (DDPG), etc.
  • Deep Neural Network (DNN)  – A neural network with many hidden layers. There is no hard-coded definition of how many layers a minimum a deep neural network has to have. Usually a minimum of 3-5 or more.
  • Recursive Neural Networks  –  Recursive Neural Networks – Call it a deep tree-like structure. When the need is to parse a whole sentence we use the recursive neural network. Tree-like topology allows branching connections and hierarchical structure. Arguments here can be how recursive neural network is different than recurrent neural networks?
  • Recurrent Neural Networks – RNNs abilities are quite limitless. Don’t get lost between Recursive and Recurrent NNs. ANN’s structure is what enables artificial intelligence, machine learning, and supercomputing to flourish. Neural networks are used for language translation, face recognition, picture captioning, text summarization and lot more tasks.
  • Convolutional Neural Networks – Convolutional Neural Networks (CNN) are an excellent tool and one of the most advanced achievements in deep learning. In today’s time, CNN’s deep learning got hyped, much of attention and focus from all players in the business. The two core concepts of convolutional neural networks are convolution (hence the name) and pooling.
  • Generative Adversarial Networks – GANs are a class of unsupervised learning algorithms used environment. As the name suggests they are called as Adversarial Networks because they are is made up of two competing neural networks i.e Generator and  Discriminator, Both networks compete with each other to achieve the zero-sum game. Both neural networks are assigned different job role i.e. contesting with each other:

In DL it uses many layers of nonlinear processing units for feature extraction and transformation. It has revolutionized today’s industries by demonstrating near-human-level accuracy in certain tasks. The task like pattern recognition, image classification, voice/text decoding and many more. Self-driving CAR is one of the best examples and biggest achievements so far.

Points not covered here

  • Adding  weights
  • Sigmoid neuron/functions
  • How to give the neurons an activation bias
  • Determine the activation level

Points to Note

When to use artificial neural networks as opposed to traditional machine learning algorithms is a complex question to answer. It entirely depends on the problem to be solved. One needs to be patient and experienced enough to have the correct answer. All credits, if any, remain with the original contributor only. In the next post, I will talk about recurrent neural networks in detail.

Books Referred & Other material referred

  • Open Internet research, news portals, and white paper reading
  • Lab and hands-on experience of @AILabPage (Self-taught Learners Group) members
  • Learning through live webinars, conferences, lectures, seminars, and AI talk shows

Feedback & Further Question

Do you need more details or have any questions on topics such as technology (including conventional architecture, machine learning, and deep learning), advanced data analysis (such as data science or big data), blockchain, theoretical physics, or photography? Please feel free to ask your question either by leaving a comment or by sending us an  via email. I will do my utmost to offer a response that meets your needs and expectations.

SECaaS - Security as a Service Is the Next Big Thing

Conclusion –  We have seen in the post above that ANNs don’t create or invent any new information or facts. ANN helps us to make sense of what’s already available in the hidden format. It takes an empirical approach to a massive amount of data to give the best and near-accurate results. Deep Learning, in short, is going much beyond machine learning and its algorithms that are either supervised or unsupervised.

============================ About the Author =======================

Read about Author atAbout Me

Thank you all, for spending your time reading this post. Please share your opinion / comments / critics / agreements or disagreement. Remark for more details about posts, subjects and relevance please read the disclaimer.

FacebookPage    ContactMe      Twitter


Posted by V Sharma

A Technology Specialist boasting 22+ years of exposure to Fintech, Insuretech, and Investtech with proficiency in Data Science, Advanced Analytics, AI (Machine Learning, Neural Networks, Deep Learning), and Blockchain (Trust Assessment, Tokenization, Digital Assets). Demonstrated effectiveness in Mobile Financial Services (Cross Border Remittances, Mobile Money, Mobile Banking, Payments), IT Service Management, Software Engineering, and Mobile Telecom (Mobile Data, Billing, Prepaid Charging Services). Proven success in launching start-ups and new business units - domestically and internationally - with hands-on exposure to engineering and business strategy. "A fervent Physics enthusiast with a self-proclaimed avocation for photography" in my spare time.


  1. […] Neural networks processing speed which often gets slow as layers increases. Some of the questions as below will get exciting responses soon. […]


  2. […] This is part -2 of our previous post – Artificial Neural Networks – Everything You Need To Know […]


  3. […] per wiki “Recurrent neural network is a class of artificial neural network where connections between nodes form a directed graph along a sequence.” This allows it to […]


  4. […] Pingback: Deep Learning – Introduction to Artificial Neural Networks | Vinod Sharma’s Blog […]


  5. […] Deep Learning – Introduction to Artificial Neural Networks […]


  6. […] Deep Learning – Introduction to Artificial Neural Networks […]


  7. Ocean Mellisa at

    A nice and easy explanation….. I would like to know more about them in details


  8. […] predictions in machine learning. This algorithm uses supervised learning methods for training Artificial Neural Networks. The whole idea of training multi-layer perceptrons is to compute the derivatives of the error […]


  9. This technnology will change the way we perceive reality.


  10. […] Deep Learning – Introduction to Artificial Neural Networks […]


  11. […] Deep Learning – Introduction to Artificial Neural Networks | Vinod Sharma’s Blog […]


  12. […] Learning process. They are inspired by the neurological structure of the human brain. According to AILabPage, ANNs are “complex computer code written with the number of simple, highly interconnected […]


  13. […] Deep learning is entirely concerned with algorithms inspired by the structure and function of artificial neural networks which are inspired by the human brain (inspired only […]


  14. […] scoring, sentiment analysis, etc. This whole game and environment are entirely centered around artificial neural networks working like the human brain and machine […]


  15. […] to use artificial neural networks as oppose to traditional machine learning algorithms is a complex one to answer.  Neural network […]


  16. […] to use artificial neural networks as oppose to traditional machine learning algorithms is a complex one to […]


  17. This content is well-detailed and easy to understand. Thank you for creating a good content!

    multi vendor grocery app


  18. […] Posted inUncategorized Deep Learning – Introduction to Artificial Neural Networks […]


  19. […] the Gaps – Deep Learning Vs Neural Networks –  As the name suggests “Neural Network”, or ANN they are inspired by the human brain system though nowhere close to it. Deep […]


  20. […] supervised learning methods for training Artificial Neural Networks are used in this […]


  21. […] to use artificial neural networks (mostly Real-Time AI) as opposed to traditional machine learning algorithms is a complex one to […]


  22. […] Deep learning is entirely concerned with algorithms inspired by the structure and function of artificial neural networks which are inspired by the human brain (inspired only pls). Deep learning is used with too much […]


  23. […] course of. They’re impressed by the neurological construction of the human mind. Based on AILabPage, ANNs are “advanced laptop code written with the variety of easy, extremely interconnected […]


  24. […] Deep Learning – Introduction to Artificial Neural Networks […]


  25. […] scoring, sentiment analysis, etc. This whole game and environment are entirely centered around artificial neural networks working like the human brain and machine […]


  26. […] Deep learning is entirely concerned with algorithms inspired by the structure and function of artificial neural networks which are inspired by the human brain (inspired only pls). Deep learning is used with too much […]


  27. […] a simple simulation only. Can neural coding simulate the human brain if yes then up to what extent? Artificial neural networks are extremely powerful for doing excellent and a super-fast for computation but can we say this any […]


  28. […] Deep Learning – Introduction to Artificial Neural Networks […]


  29. […] Deep Learning – Introduction to Artificial Neural Networks […]


Leave a Reply